文章快速检索    
  分子催化  2022, Vol. 36 Issue (2): 162-170
0

引用本文 

刘聪, 胡兴邦. CO2加氢制甲酸理论研究及高效铁基催化剂设计[J]. 分子催化, 2022, 36(2): 162-170.
LIU Cong, HU Xing-bang. Theoretical Calculation on the CO2 Hydrogenation to Formic Acid and Design More Effective Iron Based Catalyst for this Process[J]. Journal of Molecular Catalysis (China), 2022, 36(2): 162-170.

基金项目

国家自然科学基金面上项目(22178159和21878141)

作者简介

刘聪(1979-), 男, 高级工程师

通讯联系人

胡兴邦, E-mail:huxb@nju.edu.cn

文章历史

收稿日期:2021-01-23
修回日期:2022-02-01
CO2加氢制甲酸理论研究及高效铁基催化剂设计
刘聪1 , 胡兴邦2     
1. 山东国邦药业股份有限公司, 山东 潍坊 261108;
2. 南京大学 化学化工学院, 江苏 南京 210023
摘要:CO2加氢制甲酸由于需同时活化惰性氢气及CO2而富有挑战性, 同时此过程原子经济性100%, 具有很好的理论和现实研究价值, 但文献中报道的活性较好的催化剂均为贵金属催化剂. 为了开发活性更高的用于CO2加氢制甲酸的铁基催化剂, 我们采用理论计算方法研究了12种不同种类的PNP-Fe(PNP=2, 6-(二-叔丁基-磷甲基)吡啶)化合物催化CO2加氢制甲酸的过程. 理论研究结果表明, CO2加氢制甲酸反应过程包括H2活化及CO2插入金属氢键两个步骤, H2活化过程是整个反应的速控步骤. 催化剂吡啶环上进行P原子取代可以显著降低H2活化能垒. 基于以上发现, 我们设计了一种新颖的高效铁基催化剂, 使用此催化剂催化CO2加氢制甲酸反应, 速控步骤能垒只有85.6 kJ/mol, 催化活性与贵金属的比较接近. 我们研究的12种铁基催化剂速控步骤能垒范围为85.6~126.4 kJ/mol, 显示了配体良好的调控催化活性能力.
关键词CO2    加氢    甲酸    理论计算    铁基催化剂    
Theoretical Calculation on the CO2 Hydrogenation to Formic Acid and Design More Effective Iron Based Catalyst for this Process
LIU Cong1 , HU Xing-bang2     
1. Shandong GuoBang Pharmaceutical Co., Ltd., Weifang 261108, China;
2. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Abstract: CO2 hydrogenation is full of challenge because both H2 and CO2 are activated at the same time. This reaction also has 100% atomic economy. Most of the reported catalysts for CO2 hydrogenation are based on noble metal. To find out more effective iron based catalysts for the CO2 hydrogenation to formic acid, totally, the reaction processes catalyzed by 12 different PNP-Fe (PNP=2, 6-bis(di-tert-butylphosphinomethyl)pyridine) compounds were investigated. The theoretic calculation results revealed that the CO2 hydrogenation included two steps: H2 activation and CO2 inserting into the metal-hydride bond. The H2 activation is the rate-determining step. It was found that P atom substitution on the pyridine ring could obviously reduce the H2 activation barrier. Based on these findings, an effective Fe catalyst was designed, whose H2 activation barrier was only 85.6 kJ/mol, being comparable to the data of precious metal catalyst. The H2 activation barriers range from 85.6 to 126.4 kJ/mol for different Fe-based catalysts investigated here, indicating that the modification of ligand has great influence on the catalytic reactivity for the CO2 hydrogenation.
Key words: CO2    hydrogenation    formic acid    theoretical calculation    iron catalyst    

二氧化碳(CO2)是一种主要温室气体. 近年来, 大气中的CO2浓度正快速增加. 为此, 我国明确提出了“碳达峰”和“碳中和”目标. 使用CO2为原料合成有用的化工产品是碳减排的有效途径. 越来越多的学术和产业界研究人员开始关注CO2的利用问题[1].

在文献报道的CO2利用方法中, CO2加氢制甲酸是最吸引人的过程之一[2-4]. 一方面, 甲酸在工业上被广泛使用. 另一方面, CO2加氢制甲酸具有100%的原子经济性. CO2加氢包括两个步骤: 氢气(H2)活化形成金属-氢(M-H)键以及CO2插入M-H键[3-16]. 这一反应由于需同时活化惰性的CO2和H2而充满挑战. 开发高活性催化剂对于实现CO2加氢制甲酸极为重要. 文献中报道的CO2加氢制甲酸催化剂包括贵金属(如Ir[17-18]、Rh[19-20]、Ru[21-22]、Pt[23]、Pd[24-25]和Re[26])和非贵金属(如Cu[27-28]、Mn[29-30]、Fe[31-34]、Co[35-36]和Mo[37])催化剂. 在这些催化剂中, 贵金属催化剂展现出了很高的催化活性, 而非贵金属催化剂活性较低. 比如, 基于Ir的tBuPNP-Ir(III)催化剂的每摩尔催化剂单位活性中心上底物的转化数(TON)高达3 500 000[17].同样, 基于Ru的tBuPNP-Ru催化剂的TON达到6 000 000[21]. 相对而言, 非贵金属催化剂的活性要低很多. 基于Co的Co(dmpe)2H代表了活性最高的CO2加氢制甲酸非贵金属催化剂, 但其TON只有9400[35], 比tBuPNP-Ir(III)和tBuPNP-Ru的TON分别低了372[17]和638[21]倍.

尽管贵金属催化剂的催化活性非常优异, 但昂贵的价格严重限制了其大规模工业化应用. 铁(Fe)是地球上含量最丰富的过度金属元素之一. 然而, 文献报道的CO2加氢制甲酸铁基催化剂活性都非常低. 比如, 基于Fe的PNP-Fe(III)的TON只有788[31].

PNP型金属配合物在CO2加氢制甲酸过程中被广泛使用[17, 19, 21, 31]. 作为课题组在CO2加氢领域工作的重要组成部分[28, 38-39], 我们对基于Fe的PNP-Fe化合物进行不同官能化修饰理论研究, 期望从理论上揭示能大幅提升PNP-Fe催化CO2加氢制甲酸活性的方法, 为高效CO2加氢制甲酸催化剂开发提供理论基础.

1 计算方法

众所周知, 密度泛函理论(DFT)在给出合理计算结果的同时具有较高的计算效率. 基于DFT的B3LYP方法已经被广泛用于贵金属和非贵金属催化的CO2加氢制甲酸反应[6-7, 10, 16, 38-39], 并给出了可与实验相佐证的计算结果[6, 16, 38-39]. 因此, 我们采用Gaussian09程序所包含的B3LYP方法进行计算. 对于体系中的金属原子, 使用LANL2DZ基组. 对于除金属外的其它原子, 使用6-311+G*基组(后文简写为B3LYP/LANL2DZ/6-311+G*). 计算中使用EmpiricalDispersion= GD3BJ关键词进行色散校正. 所有的结构优化、能量计算以及零点能校正都采用以上所述计算方法. 计算所得过渡态均有且只有一个虚频. 由于CO2加氢制甲酸常常在四氢呋喃中进行[28, 38-39], 因此我们进一步采用PCM溶剂模型、使用UFF原子半径、以四氢呋喃为溶剂, 对所有优化构型进行了能量计算以及零点能校正(溶剂效应修正采用气态优化所得构型). 热力学修正的温度和压力分别是25.15 ℃和0.10 MPa.

计算同时考虑了过渡金属的高、低两种不同自旋态. 对于PNP-M(M=Fe, Ru)而言, 低自旋态化合物(自旋多重度=1)远比高自旋态(自旋多重度=3)的要稳定. 比如, 高自旋态PNP-Ru的吉布斯自由能比低自旋态的要高195.3 kJ/mol. 高自旋态PNP1-Fe的吉布斯自由能比低自旋态的要高165.5 kJ/mol. 因此, 后续主要关注更加稳定的低自旋态PNP-M催化剂及其催化的反应过程. 同时, 由于催化剂自旋态能量差远高于反应最大活化能能垒高度, 因此反应过程不存在自旋交叉. 文献中采用Fe或Ru类催化剂催化CO2加氢制甲酸的理论计算, 同样也没有自旋交叉存在[9, 13, 16].

2 结果与讨论

在迄今文献报道的CO2加氢制甲酸催化剂中, tBuPNP-Ru具有最高的催化活性(TON=6 000 000[21]). 因此, 我们首先对tBuPNP-Ru催化的CO2加氢制甲酸过程进行研究, 相应活化能数据可以作为标准来评估进一步设计的PNP-Fe催化剂活性. 结合文献对CO2加氢制甲酸的理论计算结果[3-16], 我们采用图 1所示催化循环机制: 首先CO2插入M-H键形成M-HCO2中间体(Int1), 然后Int1上的HCO2阴离子旋转形成更加稳定的M-OCOH中间体(Int2), 接下来活化氢气形成催化剂-甲酸配合物(Pro), 最后在碱的作用下催化剂得以还原并生成甲酸盐.

图 1 CO2加氢制甲酸催化循环 Fig.1 The catalytic process of CO2 hydrogenation to formic acid (Rea→Int2: CO2插入; Int2→Pro: H2活化) (Rea→Int2: CO2 insertion; Int2→Pro: H2 activation)

图 2展示了PNP-Ru催化CO2加氢制甲酸过程的CO2插入Ru-H键以及H2活化形成Ru-H键等步骤的吉布斯自由能变化. 图 3展示了PNP-Ru催化的CO2加氢制甲酸反应物、过渡态、中间体、产物的优化构型. Ru-H键上的氢可经由过渡态TS1PNP-Ru从活性中心Ru向CO2迁移, 相应活化能只有30.5 kJ/mol. 之后, 形成包含HCO2基团的中间体Int1PNP-Ru. HCO2基团可经由TS2PNP-Ru过渡态发生旋转形成中间体PNP-Ru-OCOH(Int2PNP-Ru).紧接着, 通过过渡态TS3PNP-Ru对H2进行活化. H2与Int2PNP-Ru结合为吸热过程, 过渡态TS3PNP-Ru中H-H键长为0.093 nm, 与Rh(PH32(0.110 nm)[3]和石墨烯负载Cu(0.101 nm)[11]催化的过程十分相似. 活化H2的过渡态TS3PNP-Ru的能垒为76.1 kJ/mol, 这一较低的能垒使得PNP-Ru成为目前实验上观察到活性最高的CO2加氢制甲酸催化剂之一[21].

图 2 含CO2、H2结合过程的PNP-Ru催化的CO2加氢制甲酸能量图 Fig.2 The energy diagram of CO2 hydrogenation to formic acid catalyzed by PNP-Ru including the binding processes of CO2 and H2(the shown values are Gibbs free energy in kJ/mol, calculation method: B3LYP/LANL2DZ/6-311+G*; energy barrier for CO2 insertion and H2 activation are 30.5 and 76.1 kJ/mol respectively)
图 3 含CO2、H2结合过程的PNP-Ru催化的CO2加氢制甲酸反应物、过渡态、中间体、产物的优化构型 Fig.3 The optimized structures of the reactant, transition states, and intermediates in the CO2 hydrogenation to formic acid catalyzed by PNP-Ru including the binding processes of CO2 and H2(The shown values are bond length in nm, calculation method: B3LYP/LANL2DZ/6-311+G*)

经由TS3PNP-Ru可以得到PNP-Ru-甲酸配合物. 研究已经表明CO2加氢制甲酸过程在热力学上不利[40], 因此往往需额外添加有机或无机碱来推动反应进行[17-37], 即通过碱使甲酸从催化剂上脱落, 形成甲酸盐, 同时催化剂得以恢复. 1, 8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)是CO2加氢制甲酸常采用的碱, 在DBU存在下, 催化循环总的吉布斯自由能变是1.0 kJ/mol(图 2). 由于吉布斯自由能为微小的正值, 所以文献中常常采用加入过量碱的方法来推动反应进一步进行[17-37].

为了研究配体修饰对铁基催化剂催化活性的影响并发现活性更高的CO2加氢制甲酸催化剂, 我们一共研究了12种具有不同结构的Fe基催化剂(图 4). 这些催化剂包括在PNP配体上进行不同吸电、给电修饰的结构(PNP1~PNP6、PNP9和PNP10), 包含及不包含分子内氢键的结构(PNP7、PNP8和PPP2). 此外, 还将PNP配体吡啶环上的N原子替换成P原子(PPP1和PPP2).

图 4 铁基催化剂结构 Fig.4 The structures of Fe-based catalysts

图 5图 6展示了PNP1-Fe催化CO2加氢制甲酸过程的H2活化形成Fe-H键以及CO2插入Fe-H键等步骤的能量图及优化构型. Fe-H键上的氢可经由过渡态TS1PNP1-Fe向CO2迁移, 相应过渡态能垒只有55.2 kJ/mol. H2活化也是PNP1-Fe催化过程的速控步骤, 相应过渡态能垒为99.9 kJ/mol. 这一H2活化能垒比使用PNP-Ru为催化剂时的高出23.8 kJ/mol, 这使得PNP1-Fe具有相对较低活性.

图 5 含CO2、H2结合过程的PNP1-Fe催化的CO2加氢制甲酸能量图 Fig.5 The energy diagram of CO2 hydrogenation to formic acid catalyzed by PNP1-Fe including the binding processes of CO2 and H2(The shown values are Gibbs free energy in kJ/mol, calculation method: B3LYP/LANL2DZ/6-311+G*; energy barrier for CO2 insertion and H2 activation are 55.2 and 99.9 kJ/mol respectively)
图 6 含CO2、H2结合过程的PNP1-Fe催化的CO2加氢制甲酸过渡态的优化构型 Fig.6 The optimized structures of transition states in the CO2 hydrogenation to formic acid catalyzed by PNP1-Fe including the binding processes of CO2 and H2(The shown values are bond length in nm, calculation method: B3LYP/LANL2DZ/6-311+G*)

由于H2活化是CO2加氢制甲酸过程的速控步骤, 我们还研究了其他修饰方式的PNP-Fe催化剂催化H2的活化过程. 图 7展示了不同修饰PNP-Fe催化CO2加氢制甲酸过程的H2活化形成Fe-H键的过渡态优化构型, 对应的能垒展示于表 1中. 将PNP-Fe上和Fe配位的CO替换为H原子会使H2活化能垒增加19.1 kJ/mol(TS3PNP2-Fe vs. TS3PNP3-Fe).在PNP配体上进行F原子修饰也会显著增加H2活化能垒. 比如, 将P原子上的-CH3修饰为-CF3使H2活化能垒增加37.9 kJ/mol. 将吡啶环上的H原子进行F原子取代后, H2活化能垒增加了21.3 kJ/mol(TS3PNP5-Fe vs. TS3PNP1-Fe). 在亚甲基上进行F原子取代也给出类似的结果(TS3PNP9-Fe和TS3PNP10-Fe). 在P原子上进行-CH3取代, 有利于中间体Int2和H2的结合, 从而使得反应活化能下降, 比如TS3PNP2-Fe的活化能比TS3PNP1-Fe的低47.7 kJ/mol. 引入分子内氢键可稳定H2活化过渡态TS3, 从而降低过渡态能垒. 比如, TS3PNP7-Fe的能垒比TS3PNP1-Fe的要低8.7 kJ/mol. 而当分子内氢键比较弱时, 其对降低活化能的贡献也相应变弱(TS3PNP7-Fe和TS3PNP8-Fe). 值得注意的是, 将PNP配体吡啶环上的N原子替换为P原子能显著降低H2活化能垒14.3 kJ/mol(TS3PPP1-Fe vs. TS3PNP1-Fe).

图 7 使用不同PNP-Fe催化剂速控步骤过渡态的优化构型 Fig.7 The optimized transition states using different Fe-based catalysts (The values are bond length in nm, calculation method: B3LYP/LANL2DZ/6-311+G*)
表 1 不同催化剂速控步骤活化能垒 Table 1 The energy barriers of rate-determining step in the presence of different catalysts

基于以上发现, 我们设计了一个包含分子内氢键及P原子取代的催化剂(PPP2-Fe). 希望通过P原子取代来调控活性中心金属Fe的电子结构、同时通过分子内氢键来稳定过渡态, 从而获得更高活性的CO2加氢制甲酸催化剂. 图 8展示了PPP2-Fe催化CO2加氢制甲酸过程的H2活化形成Fe-H键以及CO2插入Fe-H键两个步骤的能量图. 图 9展示了PPP2-Fe催化的CO2加氢制甲酸反应物、过渡态、中间体、产物的优化构型. 非常值得注意的是, 使用PPP2-Fe进行H2活化, 相应活化能垒为87.6 kJ/mol, 比不含氢键的PPP1-Fe体系的能垒稍高2.0 kJ/mol. 虽然氢键形成可在一定程度上稳定过渡态, 通过对比TS3PPP2-Fe和TS3PPP1-Fe的结构可以发现, 对于P取代的催化体系而言, 氢键形成过程会引起芳环结构一定扭曲, 从而抵消了氢键的稳定贡献. 当使用PPP2-Fe为催化剂时, CO2插入Fe-H键也很容易发生, 相应过程能垒只有28.4 kJ/mol(TS1PPP2-Fe).

图 8 含CO2、H2结合过程的PPP2-Fe催化的CO2加氢制甲酸能量图 Fig.8 The energy diagram of CO2 hydrogenation to formic acid catalyzed by PPP2-Fe including the binding processes of CO2 and H2 (The shown values are Gibbs free energy in kJ/mol, calculation method: B3LYP/LANL2DZ/6-311+G*; energy barrier for CO2 insertion and H2 activation are 30.3 and 87.6 kJ/mol respectively)
图 9 含CO2、H2结合过程的PPP2-Fe催化的CO2加氢制甲酸反应物、过渡态、中间体、产物的优化构型 Fig.9 The optimized structures of the reactant, transition states, and intermediates in the CO2 hydrogenation to formic acid catalyzed by PPP2-Fe including the binding processes of CO2 and H2(The shown values are bond length in nm, calculation method: B3LYP/LANL2DZ/6-311+G*)

PPP1-Fe是我们研究的不同铁基催化剂中具有最低速控步骤能垒的一个, 其速控步骤能垒为357.8 kJ/mol, 催化活性与贵金属比较接近. 同时, 这一能垒比我们研究的速控步骤能垒最高的PNP4-Fe降低了170.5 kJ/mol, 显示了配体良好的调控催化活性能力(表 1). 以上结果为实验开发用于CO2加氢制甲酸的高活性铁基催化剂提供了良好的借鉴和理论基础.

3 结论

为了探索用于CO2加氢制甲酸的高活性铁基催化剂, 采用理论计算的方法, 系统研究了PNP-Ru以及12种不同PNP-Fe催化剂催化的CO2加氢制甲酸过程. 研究发现: CO2加氢制甲酸包括H2活化及CO2插入金属氢键两个步骤, H2活化是整个反应的速控步骤. 铁基催化剂活性普遍低于Ru催化剂, 但对PNP配体进行合理修饰可显著降低两种活性差异. PNP配体上的F原子取代会降低催化剂活性, 而提供分子内氢键以及吡啶环上的P原子取代可增加催化剂活性. 我们设计的铁基催化剂中, PPP1-Fe具有最高活性, 其催化CO2加氢制甲酸过程速控步骤能垒只有85.6 kJ/mol, 这一活化能垒与贵金属的比较接近. 我们研究的12种铁基催化剂速控步骤能垒范围为85.6~126.4 kJ/mol, 显示了配体良好的调控催化活性能力. 我们的研究结果可为高活性CO2加氢制甲酸催化剂的开发提供理论指导和参考.

参考文献
[1]
a. Artz J, Muller T, Thenert K, et al. Sustainable con-version of carbon dioxide: An integrated review of cata-lysis and life cycle assessment[J]. Chem Rev, 2018, 118(2): 434-504.
b. Liang Zhi-ming(梁志铭), Nie Xiao-wa(聂小娃), GuoXin-wen(郭新闻), et al. DFT Insight into the effect of nidoping on hydrocarbons synthesis from CO2 hydrogenation over Fe catalyst(镍掺杂对Fe催化剂上CO2加氢制烃影响的理论计算研究)[J]. J Mol Catal(China)(分子催化), 2020, 34(4): 293-303.
c. Pan Yin-yin(潘茵茵), Song Guang-jie(宋广杰), XueKuan-rong(薛宽荣), et al. The development of hydro-formylation of alkenes and alkynes with syngas substitutes(非合成气法烯烃、炔烃氢甲酰化研究进展)[J]. J Mol Catal(China)(分子催化), 2021, 35(2): 166-177.
[2]
a. Wang W H, Himeda Y, Muckerman J T, et al. CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction[J]. Chem Rev, 2015, 115(23): 12936-12973.
b. Aisha·Nulahong(艾沙·努拉洪), Fang Ya-ping(方亚平), Gao Xi-ran(高希然), et al. Effect of ZSM-5 zeolit-es with different grains on carbonylation of syngas(不同晶粒ZSM-5沸石分子筛对合成气羰基化反应性能的影响)[J]. J Mol Catal(China)(分子催化), 2020, 34(2): 105-115.
[3]
Hutschka F, Dedieu A, Eichberger M, et al. Mechanistic aspects of the rhodium-catalyzed hydrogenation of CO2 to Formic acid a theoretical and kinetic study[J]. J Am Chem Soc, 1997, 119(19): 4432–4443. DOI:10.1021/ja961579x
[4]
Zell T, Milstein D. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization[J]. Acc Chem Res, 2015, 48(7): 1979–1994. DOI:10.1021/acs.accounts.5b00027
[5]
Yang X. Hydrogenation of carbon dioxide catalyzed by pnp pincer iridium, iron, and cobalt complexes: A computational design of base metal catalysts[J]. ACS Catal, 2011, 1(8): 849–854. DOI:10.1021/cs2000329
[6]
Schmeier T J, Dobereiner G E, Crabtree R H, et al. Seco-ndary coordination sphere interactions facilitate the insertion step in an Iridium(Ⅲ) CO2 reduction catalyst[J]. J Am Chem Soc, 2011, 133(24): 9274–9277. DOI:10.1021/ja2035514
[7]
Hou C, Jiang J, Zhang S, et al. Hydrogenation of carbon dioxide using half-sandwich cobalt, rhodium, and iridium complexes: DFT study on the mechanism and metal effect[J]. ACS Catal, 2014, 4(9): 2990–2997. DOI:10.1021/cs500688q
[8]
Kumar N, Camaioni D M, Dupuis M, et al. Mechanistic insights into hydride transfer for catalytic hydrogenation of CO2 with cobalt complexes[J]. Dalton Trans, 2014, 13: 11803–11806.
[9]
Filonenko G A, Hensen E J M, Pidko E A, et al. Mecha-nism of CO2 hydrogenation to formates by homogeneous Ru-PNP pincer catalyst: From a theoretical description to performance optimization[J]. Catal Sci Technol, 2014, 4: 3474–3485. DOI:10.1039/C4CY00568F
[10]
Rawat K S, Mahata A, Choudhuri I, et al. Catalytic hydrogenation of CO2 by manganese complexes: Role of π-acceptor ligands[J]. J Phy Chem C, 2016, 120(30): 16478–16488. DOI:10.1021/acs.jpcc.6b05065
[11]
Sirijaraensre J, Limtrakul J. Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: A DFT study[J]. Appl Surf Sci, 2016, 364: 241–248. DOI:10.1016/j.apsusc.2015.12.117
[12]
Ge H Y, Jing Y Y, Yang X Z, et al. Computational design of cobalt catalysts for hydrogenation of carbon dioxide and dehydrogenation of formic acid[J]. Inorg Chem, 2016, 55(23): 12179–12184. DOI:10.1021/acs.inorgchem.6b01723
[13]
Mondal B, Neese F, Ye S, et al. Toward rational design of 3d transition metal catalysts for CO2 hydrogenation based on insights into hydricity-controlled rate-determining steps[J]. Inorg Chem, 2016, 55(11): 5438–5444. DOI:10.1021/acs.inorgchem.6b00471
[14]
Shi Xiao-yu(时晓羽), Li Hui-peng(李会鹏), Zhao Hua(赵华), et al. Solid-state Z-Scheme photocatalytic sys-tems to splitting water and photo-reduce carbon dioxide(全固态Z-Scheme光催化材料应用于二氧化碳还原和光催化分解水研究进)[J]. J Mol Catal (China)(分子催化), 2019, 33(4): 391-397.
[15]
Du Jie(杜杰), Zhang Ya-jing(张雅静), Zhang Yu(张宇), et al. Effect of SiO2 promoter on performance of CuO-ZnO/HZSM-5 catalysts for synthesis of DME from CO2 hydrogenation(SiO2助剂对CuO-ZnO/HZSM-5催化CO2加氢制DME性能的影响)[J]. J Mol Catal (China)(分子催化), 2016, 30(4): 346-353.
[16]
Bertini F, Gorgas N, Stoger B, et al. Efficient and mild carbon dioxide hydrogenation to formate catalyzed by Fe(Ⅱ) hydrido carbonyl complexes bearing 2, 6-(diaminopyridyl) diphosphine pincer ligands[J]. ACS Catal, 2016, 6(5): 2889–2893. DOI:10.1021/acscatal.6b00416
[17]
Tanaka R, Yamashita M, Nozaki K, et al. Catalytic hydrogenation of carbon dioxide using Ir(Ⅲ)-pincer complexes[J]. J Am Chem Soc, 2009, 131(40): 14168–14169. DOI:10.1021/ja903574e
[18]
Hull J F, Himeda Y, Wang W, et al. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures[J]. Nat Chem, 2012, 4: 383–388. DOI:10.1038/nchem.1295
[19]
Anaby A, Feller M, Ben-David Y, et al. Bottom-up construction of a CO2-based cycle for the photocarbon-ylation of benzene, promoted by a rhodium(I) pincer complex[J]. J Am Chem Soc, 2016, 138(31): 9941–9950. DOI:10.1021/jacs.6b05128
[20]
Qian Q, Zhang J, Cui M, et al. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2[J]. Nat Commun, 2016, 7: 11481. DOI:10.1038/ncomms11481
[21]
Li Z, Rayder T M, Luo L, et al. Aperture-opening enca-psulation of a transition metal catalyst in a metal-orga-nic framework for CO2 hydrogenation[J]. J Am Chem Soc, 2018, 140(26): 8082–8085. DOI:10.1021/jacs.8b04047
[22]
Weilhard A, Qadir M I, Sans V, et al. Selective CO2 hydrogenation to formic acid with multifunctional ionic liquids[J]. ACS Catal, 2018, 8(3): 1628–1634. DOI:10.1021/acscatal.7b03931
[23]
Zhang X, Liu G, Meiwes-Broer K, et al. CO2 activation and hydrogenation by PtHn- cluster anions[J]. Angew Chem Int Ed, 2016, 55(33): 9644–9647. DOI:10.1002/anie.201604308
[24]
Mori K, Sano T, Kobayashi H, et al. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles[J]. J Am Chem Soc, 2018, 140(28): 8902–8909. DOI:10.1021/jacs.8b04852
[25]
Liu G, Poths P, Zhang X, et al. CO2 Hydrogenation to formate and formic acid by bimetallic palladium-copper hydride clusters[J]. J Am Chem Soc, 2020, 142(17): 7930–7936. DOI:10.1021/jacs.0c01855
[26]
Jiang Y, Blacque O, Fox T, et al. Catalytic CO2 activation assisted by rhenium hydride/B(C6F5)3 frustrated lewis pairs-metal hydrides functioning as FLP bases[J]. J Am Chem Soc, 2013, 135(20): 7751–7760. DOI:10.1021/ja402381d
[27]
Zall C M, Linehan J C, Appel A M, et al. Triphosphine-ligated copper hydrides for CO2 hydrogenation: Structure, reactivity, and thermodynamic studies[J]. J Am Chem Soc, 2016, 138(31): 9968–9977. DOI:10.1021/jacs.6b05349
[28]
Romero E A, Zhao T, Nakano R, et al. Tandem copper hydride-Lewis pair catalysed reduction of carbon dioxide into formate with dihydrogen[J]. Nat Catal, 2018, 1: 743–747. DOI:10.1038/s41929-018-0140-3
[29]
Kar S, Goeppert A, Kothandaraman J, et al. Manganese-catalyzed sequential hydrogenation of CO2 to methanol via formamide[J]. ACS Catal, 2017, 7(9): 6347–6351. DOI:10.1021/acscatal.7b02066
[30]
Dubey A, Nencini L, Fayzullin R R, et al. Bio-inspired Mn(I) complexes for the hydrogenation of CO2 to formate and formamide[J]. ACS Catal, 2017, 7(6): 3864–3868. DOI:10.1021/acscatal.7b00943
[31]
Langer R, Diskin-Posner Y, Leitus G, et al. Low-pressure hydrogenation of carbon dioxide catalyzed by an Iron pincer complex exhibiting Noble metal activity[J]. Angew Chem Int Ed, 2011, 50(42): 9948–9952. DOI:10.1002/anie.201104542
[32]
Curley J, Smith N, Bernskoetter W, et al. Understanding the reactivity and decomposition of a highly active Iron pincer catalyst for hydrogenation and dehydrogenation reactions[J]. ACS Catal, 2021, 11(16): 10631–10646. DOI:10.1021/acscatal.1c03347
[33]
Lane E, Zhang Y, Hazari N, et al. Sequential hydrogenation of CO2 to methanol using a pincer Iron catalyst[J]. Organometallics, 2019, 38(15): 3084–3091. DOI:10.1021/acs.organomet.9b00413
[34]
Dai H, Li W, Krause J, et al. Experimental evidence of syn H-N-Fe-H configurational requirement for Iron-based bifunctional hydrogenation catalysts[J]. Inorg Chem, 2021, 60(9): 6521–6535. DOI:10.1021/acs.inorgchem.1c00328
[35]
Jeletic M S, Mock M T, Appel A M, et al. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions[J]. J Am Chem Soc, 2013, 135(31): 11533–11536. DOI:10.1021/ja406601v
[36]
Schneidewind J, Adam R, Baumann W, et al. Low-Temperature hydrogenation of carbon dioxide to methanol with a homogeneous cobalt catalyst[J]. Angew Chem Int Ed, 2017, 56(7): 1890–1893. DOI:10.1002/anie.201609077
[37]
Maia L B, Fonseca L, Moura I, et al. Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: A kinetic and mechanistic study[J]. J Am Chem Soc, 2016, 138(28): 8834–8846. DOI:10.1021/jacs.6b03941
[38]
Zhao T, Hu X, Wu Y, et al. Hydrogenation of CO2 to formate with H2 : Transition metal free catalyst based on a lewis pair[J]. Angew Chem Int Ed, 2019, 58(3): 722–726. DOI:10.1002/anie.201809634
[39]
Hu J, Liu J, Yao C, et al. Effective hydrogenation of CO2 to formate catalyzed by ionic liquid modified acetate-Cu[J]. Green Chem, 2021, 23: 951–956. DOI:10.1039/D0GC03502E
[40]
Schaub T, Paciello R. A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO[J]. Angew Chem Int Ed, 2011, 50(32): 7278–7282. DOI:10.1002/anie.201101292