2. 中国科学院宁波材料技术与工程研究所浙江省先进燃料电池与电解池技术重点实验室, 浙江 宁波315201
2. Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences (CAS), Ningbo 315201, China
顺式烯烃在药物分子、天然产物和香料等领域都有着广泛的应用(图1)[1]. 炔烃的选择性还原是合成顺式烯烃最直接、有效的方式之一[2]. 然而, 炔烃在还原过程中往往存在异构化和过度还原的问题, 因此发展一种高选择性还原内炔制备顺式烯烃的方法是一个重要的挑战. 常见的炔烃选择性还原是以Lindlar催化剂进行该反应[3], Lindlar催化剂由醋酸铅或喹啉修饰的钯/碳酸钙组成, 然而由于铅的剧毒性质以及存在可能从催化剂表现浸出的风险, 限制了其在食品、化妆品和药品制造等方面的应用; 另外金属钯的价格居高不下, 导致成本高昂. 因此, 探索廉价金属催化的顺式烯烃制备方法具有重要的意义. 近年来, 随着金属有机化学的发展, 基于锰[4−6]、铁[7−8]、钴[9−11]、镍[12−13]和铜[14−17]等丰产金属催化剂不断被开发, 它们在炔烃的选择性还原反应中表现出了一定的活性, 但是目前还存在催化效率不足, 且需要用到特殊的配体等问题.
铜在地壳中具有丰富的储量, 约是铂族金属储量的4.0×105倍. 根据《中国矿产资源报告2022》显示, 2021年中国铜矿储量为3.495×107 t. 除此之外, 铜作为催化剂已有一百多年的发展历史, 例如乌尔曼反应[18]和酯的催化加氢[19]等. 因此, 以铜作为催化剂实现炔烃的高选择性还原具有重要的意义(图2(a)). 1989年, Ryu等[20]利用200%的铜(Ⅱ)参与、以二乙基甲基硅烷为氢源对炔烃进行选择性还原反应以来, Tsuji[14a]、Lalic[14b]、Teichert[15a,16b,16c]、Grela[15b]和Nakao[16a]等发展了多种金属铜催化策略, 利用硅烷、硼烷、氢气等多种氢源, 实现了由炔烃选择性还原制备顺式烯烃. 但是, 铜在催化炔烃选择性还原时, 主要使用硅烷和硼烷作为氢源, 会产生大量的废弃物. 以氢气作为氢源时, 低压氢的底物适应范围有限, 为了实现好的底物适应性往往需要高温和高压(8.0~10.0 MPa), 操作上较为繁琐. 醇也可以作为一种氢源, 以醇为原料通过“借氢”策略实现炔烃还原具有原子经济性高、环境友好等优点, 符合绿色化学的发展理念[21]. 目前, 以异丙醇为氢源的铜催化炔烃选择性转移氢化反应有且仅有一例报道[17a](图2(b)), 但面临催化剂用量高、碱用量大、选择性差等问题. 因此, 探索高效、简便、选择性好的催化体系仍有很重要的研究价值.
利用三氟甲磺酸铜(Cu(OTf)2)作为催化剂前体, Xantphos作为配体, 以异丙醇作为氢源, 通过添加碱作为助剂, 即可实现炔烃的顺式选择性转移氢化反应, 高选择性地制备了顺式烯烃.
1 实验部分 1.1 试剂与仪器二苯基乙炔购于安徽泽升科技有限公司, 通过柱层析纯化并用EtOH进行结晶纯化后使用; 炔烃1b−1n通过文献报道方法合成[22]; 其他分析纯试剂通过市售渠道购买后直接使用.
核磁共振波谱仪(型号: Bruker AVANCE Ⅲ 400 MHz型和600 MHz型, 瑞士Bruker公司); 气相色谱分析仪(型号: Agilent 8860, 安捷伦科技有限公司); 气相-质谱联用仪(型号: Agilent 8860/5977B, 安捷伦科技有限公司).
1.2 炔烃选择性转移氢化反应步骤在N2气氛手套箱中, 向带有磁力搅拌子的10 mL干燥杨氏管中加入Cu(OTf)2(9.1 mg, 0.025 mmol), Xantphos(17.4 mg, 0.03 mmol)和异丙醇(0.5 mL). 室温下搅拌1 h后加入甲醇钾(7.0 mg, 0.1 mmol). 随后, 向反应管中加入二苯基乙炔(89.1 mg, 0.5 mmol)和异丙醇(0.5 mmol). 将反应管带出手套箱置于油浴锅中, 在130 ℃下反应24 h. 反应结束后, 将反应管冷却至室温, 取适量反应液用乙酸乙酯稀释, 通过GC测量确定转化率和选择性. 随后将反应液经过硅胶柱层析分离纯化(石油醚), 得到产物2a−2c、2e−2l.
产物核磁数据如下:
(Z)-1,2-二苯基乙烯 (2a): 收率: 85%; 无色液体; Z/E值大于99/1是通过GC检测获得; 1H NMR (400 MHz, CDCl3) δ 7.26-7.11 (m, 10H), 6.59 (s, 2H); 13C NMR (101 MHz, CDCl3) δ 137.3, 130.3, 128.9, 128.2, 127.1.
(Z)-4-甲基二苯基乙烯 (2b): 收率: 50%; 无色液体; Z/E值为98.5/1.5是通过GC检测获得; 1H NMR (400 MHz, CDCl3) δ 7.27-7.13 (m, 7H), 7.02 (d, J = 11.4 Hz, 2H), 6.55 (s, 2H), 2.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 137.5, 136.9, 134.3, 130.2, 129.6, 128.9, 128.9, 128.8, 128.2, 127.0, 21.2.
(Z)-3-甲基二苯基乙烯 (2c): 收率: 71%; 无色液体; Z/E值大于99/1是通过GC检测获得; 1H NMR (400 MHz, CDCl3) δ 7.25-7.16 (m, 5H), 7.10-6.99 (m, 4H), 6.56 (s, 2H), 2.25 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 137.8, 137.4, 137.2, 130.4, 130.1, 129.6, 128.9, 128.2, 128.1, 127.9, 127.1, 125.9, 21.3.
(Z)-4-甲氧基二苯基乙烯 (2e): 收率: 32%; 淡黄色固体; Z/E/3值为87/9/4是通过GC检测获得; 1H NMR (400 MHz, CDCl3) δ 7.28-7.16 (m, 7H), 6.77-6.73 (m, 2H), 6.55-6.48 (m, 2H), 3.78 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 158.7, 137.7, 130.2, 129.8, 129.7, 128.8, 128.8, 128.2, 126.9, 113.6, 55.2.
(Z)-4-氟二苯基乙烯 (2f): 收率: 74%; 无色液体; Z/E值大于99/1是通过GC检测获得; 1H NMR (400 MHz, CDCl3) δ 7.24-7.18 (m, 7H), 6.92-6.88 (m, 2H), 6.60-6.52 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 163.1 (d, J =370.1 Hz), 137.1, 133.2 (d, J = 5.0 Hz), 130.6 (d, J = 12.1 Hz), 130.3, 129.1, 128.8, 128.3, 127.2, 115.3, 115.0.
(Z)-4-氯二苯基乙烯 (2g): 收率: 91%; 无色液体; Z/E值大于99/1是通过GC检测获得; 1H NMR (400 MHz, CDCl3) δ 7.24-7.14 (m, 9H), 6.60 (dd, J1 = 12.0 Hz, J2 = 60.0 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 136.9, 135.7, 132.8, 131.0, 130.2, 128.9, 128.8, 128.4, 128.4, 127.3.
(Z)-4-溴二苯基乙烯 (2h): 收率: 88%; 无色液体; Z/E值大于99/1是通过GC检测获得; 1H NMR (400 MHz, CDCl3) δ 7.33 (d, J = 8.4 Hz, 2H), 7.24-7.20 (m, 5H), 7.11 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 12.2 Hz, 1H), 6.50 (d, J = 12.2 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ 136.8, 136.1, 131.4, 131.0, 130.5, 128.9, 128.8, 128.4, 127.3, 120.9.
(Z)-1,1’-联苯-4-苯乙烯 (2i): 收率: 85%; 白色固体; Z/E值大于99/1是通过GC检测获得; 1H NMR (400 MHz, CDCl3) δ 7.60-7.57 (m, 2H), 7.47-7.40 (m, 4H), 7.34-7.18 (m, 8H), 6.62 (s, 2H); 13C NMR (151 MHz, CDCl3) δ 140.7, 139.8, 137.4, 136.3, 130.5, 129.8, 129.4, 128.9, 128.8, 128.3, 127.3, 127.2, 126.9, 126.9.
(Z)-1-苯基-3,3-二甲基丁烯 (2j): 收率: 49%; 无色液体; Z/E值大于99/1是通过GC检测获得; 1H NMR (600 MHz, CDCl3) δ 7.28-7.25 (m, 2H), 7.21-7.17 (m, 3H), 6.41 (d, J = 12.6 Hz, 1H), 5.60 (d, J = 12.6 Hz, 1H), 0.98 (s, 9H); 13C NMR (151 MHz, CDCl3) δ 142.7, 139.4, 129.0, 127.6, 127.1, 126.2, 34.2, 31.2.
(Z)-1-(3,3-二甲基-1-丁烯)-4-甲基苯乙烯 (2k): 收率49%; 无色液体; Z/E值大于99/1是通过GC检测获得; 1H NMR (600 MHz, CDCl3) δ 7.09-7.06 (m, 4H), 6.37 (d, J = 12.6 Hz, 1H), 5.57 (d, J = 12.6 Hz, 1H), 2.33 (s, 3H), 0.98 (s, 9H); 13C NMR (151 MHz, CDCl3) δ 142.5, 136.4, 135.7, 128.9, 128.3, 127.1, 34.1, 31.3, 21.2.
(Z)-1-(3,3-二甲基-1-丁烯)-4-氟苯乙烯 (2l): 收率: 40%; 无色液体; Z/E值大于99/1是通过GC检测获得; 1H NMR (600 MHz, CDCl3) δ 7.14-7.11 (m, 2H), 6.97-6.94 (m, 2H), 6.34 (d, J = 12.6 Hz, 1H), 5.61 (d, J = 12.6 Hz, 1H), 0.97 (s, 9H); 13C NMR (151 MHz, CDCl3) δ 162.3 (d, J = 244.3 Hz), 143.3, 130.4 (d, J = 8.5 Hz), 126.0, 114.5, 114.4, 34.2, 31.2.
2 结果与讨论 2.1 条件优化首先, 使用二苯基乙炔(1a)为标准底物、叔丁醇钾为碱、异丙醇为氢源和溶剂, 当仅加入Cu(OTf)2作为催化剂时, 以50%的底物转化率和92/8的Z/E选择性得到顺式烯烃(表1, Entry 1). 随后, 测试了不同配体对该反应的影响(表1, Entry 2−11). 结果表明, 配体加入后能够调变反应的催化性能. 当使用dppb和Xantphos为配体时, 转化率分别为68%(Z/E = 94/6)和65%(Z/E = 99/1)的收率(表1, Entry 5和7), 使用其它配体反应收率都有所降低. 接下来以Xantphos为配体对碱的种类进行了考察, 其中以甲醇钾(CH3OK)为碱的反应结果更好(表1, Entry 14), 而当不加入碱时, 该反应不发生(表1, Entry 16). 此外还对反应温度和时间进行了优化, 当温度为140 ℃反应12 h时, 以80%的转化率得到了顺式烯烃(表1, Entry 17), 继续延长时间至24 h后转化率也仅能达到90%(表1, Entry 18). 而当反应温度为130 ℃、反应时间为24 h时, 该反应以91%的转化率, 85%的分离收率, Z/E值大于99/1得到顺式烯烃(表1, Entry 19). 最后, 还对比了以正丙醇和正丁醇为氢源, 分别仅能得到11%和10%的顺式烯烃(表1, Entry 20和Entry 21). 由此, 确定了炔烃选择性转移氢化反应的最优反应条件: 以Cu(OTf)2为铜前体、Xantphos为配体、CH3OK为碱、iPrOH为氢源和溶剂, 在130 ℃下反应24 h.
在确定最佳反应条件后, 对底物的适应范围进行了考察, 如表2所示. 首先, 考察了空间位阻效应, 分别以其中一个苯基有对位、间位或邻位甲基取代二芳基乙炔(1b−1d)为底物. 在标准条件下, 以含对位和间位甲基的1b和1c为底物是分别取得了50%和71%收率的顺式二芳基乙烯2b和2c, Z/E比分别为98.5/1.5和大于99/1. 但是, 位阻相对较大的邻甲基取代二芳基乙炔需要通过加大催化量至10%后, 方能检测到有68%的顺式烯烃产生, Z/E值大于99/1. 其次, 考察了取代基的电子效应, 分别在二苯基乙炔其中一个苯基的对位引入甲氧基(1e)、氟(1f)、氯(1g)、溴(1h)和苯基(1i). 在标准条件下, 对甲氧基取代的二苯基乙炔有少量过度氢化的产物3e生成, 顺式烯烃2e收率为32%, Z/E/3值为87/9/4. 含卤素的3个底物在以10%的铜为催化剂时, 分别取得了74%(2f)、91%(2g)和88%(2g)收率的顺式烯烃产物, Z/E值均大于99/1. 这些含卤素的产物可进一步转化合成功能化的顺式烯烃. 当对位有苯基时(1i), 在标准条件下以85%的收率获得顺式烯烃2i, Z/E 值也大于99/1. 接着, 对芳基烷基乙炔(1j−1n)进行了考察. 结果表明, 相较于二芳基乙炔, 该反应体系对芳基烷基乙炔的活性较低. 在催化剂用量为10%时, 收率在26%~49%之间, 而Z/E值则依旧大于99/1. 最后, 以二烷基炔烃7-十四炔(1o)为底物时反应基本不进行, 可能是由于7-十四炔更加富电子, 使迁移插入更加缓慢, 导致反应难以进行.
考察了底物适用范围后, 对反应机理进行了初步探索(图3). 在最优反应条件下, 分别以顺式烯烃cis-2a和反式烯烃trans-2a加入到反应体系中, 实验结果显示烯烃的构型并未发生翻转, 也未检测到有1,2-二苯基乙烷生成, 表明烯烃在反应体系中不会发生异构化和过度还原(方程式(1)和(2)). 将最佳反应条件中的三氟甲磺酸铜(Ⅱ)换成四(乙腈)三氟甲磺酸铜(I)时, 该反应仍能以39%的转化率得到cis-2a, 表明Cu(I)可能是催化活性物种(方程式(3)). 通过对模板反应液进行GC-MS和GC分析, 以及与异佛尔酮标准样品色谱和质谱图进行比对, 可以确认反应中有异佛尔酮生成(方程式(4)). 随后, 对生成异佛尔酮的反应条件进行了考察, 结果表明在碱存在条件下丙酮会缩合成异佛尔酮(方程式(5)). 由此, 可以推测在催化炔烃选择性转移氢化反应中会生成丙酮.
结合已有的文献报道和对比实验, 我们认为一价铜为真正的活性催化物种, 因此推测的反应机理如下(图4): 首先, 铜(Ⅱ)配合物在碱性条件下与异丙醇反应生成异丙氧基铜(I)配合物 A[6a]; 随后, 异丙氧基铜(I)配合物A发生β-H消除, 生成Cu(I)-H物种B[23]; Cu(I)-H物种B和炔烃发生配体交换[14e], 生成炔基配位的Cu(I)-H物种C和丙酮; C发生顺式的迁移插入得到烯基铜(I)物种D[14a−14c]; D与异丙醇发生质子解, 得到异丙氧基铜(I)配合物A, 完成了催化循环, 并生成产物顺式烯烃[6b,10b].
综上所述, 发展了一种以异丙醇为氢源、Xantphos为配体和Cu(OTf)2为催化剂前体, 催化量的甲醇钾作为添加剂, 内炔选择性顺式还原的方法. 该方法可高选择性制备顺式烯烃, 烯烃顺反比普遍大于99/1. 在该反应体系中, 不需要提前预制配合物, 相较于已报道的催化体系而言, 催化剂用量较低, 仅使用催化量的碱作为添加剂, 具有更加优异的收率和选择性. 该反应条件温和, 具有良好的官能团耐受性, 为顺式烯烃的绿色合成提供了一种新的方法.
[1] |
a. Siebert A, Gensicka M, Cholewinski G, et al. Synthesis of combretastatin A-4 analogs and their biological activities[J]. Anticancer Agents Med Chem, 2016, 16(8): 942−960. b. Zhao R C, Wu Y S, Zhang Y Q, et al. Designing anticancer combretastatin A-4 analogues with aggregation-induced emission characteristics[J]. Sci China Chem, 2022, 65(4): 694−698. c. Saki G, Eidi A, Mortazavi P, et al. Effect of β-asarone in normal and β-amyloid-induced alzheimeric rats[J]. Arch Med Sci, 2020, 16(3): 699−706. d. Geng Y T, Li C C, Liu J C, et al. Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats[J]. Biol Pharm Bul, 2010, 33(5): 836−843.e. Pawełczyk A, Zaprutko L. Microwave assisted synthesis of fragrant jasmone heterocyclic analogues[J]. Eur J Med Chem, 2006, 41(5): 586−591. f. Shalev A, Hermesh H, Munitz H. The hypouricemic effect of chlorprothixene[J]. Clin Pharmacol Ther, 1987, 42(5): 562−566.
|
[2] |
a. Fujihara T, Semba K, Terao J, et al. Regioselective transformation of alkynes catalyzed by a copper hydride or boryl copper species[J]. Catal Sci Technol, 2014, 4(6): 1699−1709. b. Cox N, Dang H, Whittaker A M, et al. NHC-copper hydrides as chemoselective reducing agents: Catalytic reduction of alkynes, alkyl triflates and alkyl halides[J]. Tetrahedron, 2014, 70(27/28): 4219−4231. c. Chen J H, Guo J, Lu Z. Recent advances in hydrometallation of alkenes and alkynes via the first row transition metal catalysis[J]. Chin J Chem, 2018, 36(11): 1075−1109. d. Swamy K K, Reddy A S, Sandeep K, et al. Advances in chemoselective and/or stereoselective semihydrogenation of alkynes[J]. Tetrahedron Lett, 2018, 59(5): 419−429. e. Sharma D M, Punji B. 3d Transition metal-catalyzed hydrogenation of nitriles and alkynes [J] . Chem Asian J, 2020, 15(6): 690−708. f. Decker D, Drexler H, Heller D, et al. Homogeneous catalytic transfer semihydrogenation of alkynes-an overview of hydrogen sources, catalysts and reaction mechanisms[J]. Catal Sci Technol, 2020, 10(19): 6449−6463. g. Xiu Jing-hai(修景海), Chen Xiao(陈 霄), Liang Changhai(梁长海), et al. Chemical synthesis of Al-Co intermetallic compound catalysts for selective hydrogenation of alkyne(AlCo金属间催化剂的合成及炔烃选择加氢性能) [J]. J Mol Catal(China)(分子催化), 2017, 31(4): 325−333.
|
[3] |
a. Lindlar H. Ein neuer Katalysator für selektive Hydrierungen[J]. Helv Chim Acta, 1952, 35(2): 446−450. b. Lindlar H, Dubuis R. Palladium catalyst for partial reduction of acetylenes[J]. Org Synth, 1966, 46: 89−91.
|
[4] |
a. Zhou Y P, Mo Z B, Luecke M, et al. Stereoselective transfer semi-hydrogenation of alkynes to E-olefins with N-heterocyclic silylene-manganese catalysts[J]. Chem Eur J, 2018, 24(19): 4780−4784. b. Brzozowska A, Azofra L M, Zubar V, et al. Highly chemo- and stereoselective transfer semihydrogenation of alkynes catalyzed by a stable, well-defined manganese(II) complex[J]. ACS Catal, 2018, 8(5): 4103−4109.
|
[5] |
a. Garbe M, Budweg S, Papa V, et al. Chemoselective semihydrogenation of alkynes catalyzed by manganese(I)-PNP pincer complexes[J]. Catal Sci Technol, 2020, 10(12): 3994−4001. b. Zubar V, Sklyaruk J, Brzozowska A, et al. Chemoselective hydrogenation of alkynes to(Z)-alkenes using an air-stable base metal catalyst[J]. Org Lett, 2020, 22(14): 5423−5428. c. Farrar-Tobar R A, Weber S, Csendes Z, et al. E-selective manganese-catalyzed semihydrogenation of alkynes with H2 directly employed or in situ-generated[J]. ACS Catal, 2022, 12(4): 2253−2260.
|
[6] |
a. Sklyaruk J, Zubar V, Borghs J C, et al. Methanol as the hydrogen source in the selective transfer hydrogenation of alkynes enabled by a manganese pincer complex[J]. Org Lett, 2020, 22(15): 6067−6071. b. Torres-Calis A, García J J. Manganese-catalyzed transfer semihydrogenation of internal alkynes to E-alkenes with iPrOH as hydrogen source[J]. Catal Sci Technol, 2022, 12(9): 3004−3015.
|
[7] |
Z-Selective alkyne semi-hydrogenation catalysed by piano-stool N-heterocyclic carbene iron complexes
[J]. Catal Sci Technol, 2018, 8(11): 2779–2783.
DOI:10.1039/C8CY00681D |
[8] |
a. Srimani D, Diskin-Posner Y, Ben-David Y, et al. Iron pincer complex catalyzed, environmentally benign, E-selective semi-hydrogenation of alkynes[J]. Angew Chem Int Ed, 2013, 52(52): 14131−14134. b. Gorgas N, Brünig J, Sto-ger B, et al. Efficient Z-selective semihydrogenation of internal alkynes catalyzed by cationic iron(II) hydride complexes[J]. J Am Chem Soc, 2019, 141(43): 17452−17458. c. Pandey D K, Khaskin E, Pal S, et al. Efficient Fe-catalyzed terminal alkyne semihydrogenation by H2: Selectivity control via a bulky PNP pincer ligand[J]. ACS Catal, 2023, 13(1): 375−381.
|
[9] |
Dinuclear cobalt complex-catalyzed stereodivergent semireduction of alkynes: Switchable selectivities controlled by H2O
[J]. ACS Catal, 2021, 11(21): 13696–13705.
DOI:10.1021/acscatal.1c04141 |
[10] |
a. Fu S M, Chen N Y, Liu X F, et al. Ligand-controlled cobalt-catalyzed transfer hydrogenation of alkynes: Stereodivergent synthesis of Z- and E-alkenes[J]. J Am Chem Soc, 2016, 138(27): 8588−8594. b. Jaiswal G, Landge V G, Balaraman E, et al. N-graphitic modified cobalt nanoparticles supported on graphene for tandem dehydrogenation of ammonia-borane and semihydrogenation of alkynes[J]. ACS Sustainable Chem Eng, 2020, 8(30): 11058−11068. c. Decker D, Wei Z H, Rabeah J, et al. Catalytic and mechanistic studies of a highly active and E-selective Co(II) PNNH pincer catalyst system for transfer-semihydrogenation of internal alkynes[J]. Inorg Chem Front, 2022, 9(4): 761−770. d. Sharma D M, Gouda C, Gonnade R G, et al. Room temperature Z-selective hydrogenation of alkynes by hemilabile and non-innocent(NNN)Co(II) catalysts[J]. Catal Sci Technol, 2022, 12(6): 1843−1849.
|
[11] |
a. Chen C Y, Huang Y, Zhang Z P, et al. Cobalt-catalyzed(Z)-selective semihydrogenation of alkynes with molecular hydrogen[J]. Chem Commun, 2017, 53(33): 4612−4615. b. Lapointe S, Pandey D K, Gallagher J M, et al. Cobalt complexes of bulky PNP ligand: H2 activation and catalytic two-electron reactivity in hydrogenation of alkenes and alkynes[J]. Organometallics, 2021, 40(21): 3617−3626.
|
[12] |
Semihydrogenation of alkynes in the presence of Ni(0) catalyst using ammonia-borane and sodium borohydride as hydrogen sources[J]. Appl Catal A:Gen, 2010, 385(1/2): 108–113.
|
[13] |
a. Murugesan K, Alshammari A S, Sohail M, et al. Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes[J]. J Catal, 2019, 370: 372−377. b. Hale D J, Ferguson M J, Turculet L. (PSiP)Ni-catalyzed(E)-selective semihydrogenation of alkynes with molecular hydrogen[J]. ACS Catal, 2022, 12(1): 146−155.
|
[14] |
a. Semba K, Fujihara T, Xu T H, et al. Copper-catalyzed highly selective semihydrogenation of non-polar carbon-carbon multiple bonds using a silane and an alcohol[J]. Adv Synth Catal, 2012, 354(8): 1542−1550. b. Whittaker A M, Lalic G. Monophasic catalytic system for the selective semireduction of alkynes[J]. Org Lett, 2013, 15(5): 1112−1115. c. Wang G H, Bin H Y, Sun M, et al. Copper-catalyzed Z-selective semihydrogenation of alkynes with hydrosilane: A convenient approach to cis-alkenes[J]. Tetrahedron, 2014, 70(12): 2175−2179. d. Hall J W, Unson D M L, Brunel P, et al. Copper-NHC-mediated semihydrogenation and hydroboration of alkynes: Enhanced catalytic activity using ring-expanded carbenes[J]. Organometallics, 2018, 37(18): 3102−3110. e. Duan L F, Jiang K, Zhu H, et al. CuCl2-catalyzed highly stereoselective and chemoselective reduction of alkynyl amides into α,β-unsaturated amides using silanes as hydrogen donors[J]. Org Biomol Chem, 2021, 19(2): 365−369.
|
[15] |
a. Korytiaková E, Thiel N O, Pape F, et al. Copper(I)-catalysed transfer hydrogenations with ammonia borane[J]. Chem Commun, 2017, 53(4): 732−735. b. Kusy R, Grela K. Ligand-free(Z)-selective transfer semihydrogenation of alkynes catalyzed by in situ generated oxidizable copper nanoparticles[J]. Green Chem, 2021, 23(15): 5494−5502. c. Park B Y, Lim T, Han M S. A simple and efficient in situ generated copper nanocatalyst for stereoselective semihydrogenation of alkynes[J]. Chem Commun, 2021, 57(56): 6891−6894. d. Zhang X G, Lin H, Zhang J, et al. Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes[J]. Chem Sci, 2021, 12(43): 14599−14605.
|
[16] |
a. Semba K, Kameyama R, Nakao Y. Copper-catalyzed semihydrogenation of alkynes to Z-alkenes[J]. Synlett, 2015, 26(3): 318−322. b. Pape F, Thiel N O, Teichert J F. Z-selective copper(Ⅰ)-catalyzed alkyne semihydrogenation with tethered Cu-alkoxide complexes[J]. Chem Eur J, 2015, 21(45): 15934−15938. c. Thiel N O, Teichert J F. Stereoselective alkyne semihydrogenations with an air-stable copper(I) catalyst[J]. Org Biomol Chem, 2016, 14(45): 10660−10666. d. Wakamatsu T, Nagao K, Ohmiya H, et al. Copper-catalyzed semihydrogenation of internal alkynes with molecular hydrogen[J]. Organometallics, 2016, 35(10): 1354−1357.
|
[17] |
a. Kaicharla T, Zimmermann B M, Oestreich M, et al. Using alcohols as simple H2-equivalents for copper-catalysed transfer semihydrogenations of alkynes[J]. Chem Commun, 2019, 55(89): 13410−13413. b. Huang J Z, Li X N, Wen H L, et al. Substrate-controlled Cu(OAc)2-catalyzed stereoselective semi-reduction of alkynes with MeOH as the hydrogen source[J]. ACS Omega, 2021, 6(17): 11740−11749. c. Moran M J, Martina K, Cravotto G, et al. Copper(0) nanoparticle catalyzed Z-selective transfer semihydrogenation of internal alkynes[J]. Adv Synth Catal, 2021, 363(11): 2850−2860.
|
[18] |
a. Hassan J, Sévignon M, Gozzi C, et al. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction[J]. Chem Rev, 2002, 102(5): 1359−1470. b. Sperotto E, van Klink G P M, van Koten G, et al. The mechanism of the modified Ullmann reaction[J]. Dalton Trans, 2010, 39(43): 10338−10351. c. Li Heng-yu(李恒宇), Bai Jie(白 杰), Wang Jun-zhong(王俊忠), et al. Ullmann-type coupling reactions catalyzed by SAPO-34 supported copper nanoparticles (SAPO-34分子筛载铜催化剂催化Ullmann偶联反应) [J]. J Mol Catal(China)(分子催化), 2016, 30(4): 317−323.
|
[19] |
a. Zhu Y F, Kong X, Li X Q, et al. Cu nanoparticles inlaid mesoporous Al2O3 as a high-performance bifunctional catalyst for ethanol synthesis via dimethyl oxalate hydrogenation[J]. ACS Catal, 2014, 4(10): 3612−3620.b. Wang Y, Shen Y L, Zhao Y J, et al. Insight into the balancing effect of active Cu species for hydrogenation of carbon-oxygen bonds[J]. ACS Catal, 2015, 5(10): 6200−6208.c. He Dong-cheng(何东城), Li Teng(李 腾), Liu Shu-juan(柳淑娟), et al. N-Ligand regulated heterogenous copper catalyst for selective hydrogenation of cinnamaldehyde(1,10-菲啰啉修饰Cu/Al2O3催化肉桂醛羰基高效选择性加氢)[J]. J Mol Catal(China)(分子催化), 2023, 37(3): 213−224.d. Ren Shen-yong(任申勇), Huang Zhi-gang(黄志岗), Sun Hua-yang(孙华阳), et al. Preparation of highly selective hydrocracking/hydroisomerization catalyst for n-Hexadecane by tuning porosity and acidity of SAPO-11(通过调变SAPO-11的孔道和酸性制备高选择性加氢裂化/异构化催化剂)[J]. J Mol Catal(China)(分子催化), 2022, 36(6): 534−546.e. Cheng Qi(程 琪), Nie Xiao-wa(聂小娃), Guo Xin-wen(郭新闻). Density functional theory study of the effect of Ru doping on the hydrodeoxygenation of phenolic compounds over Fe catalyst (Ru掺杂对Fe催化剂上酚类化合物加氢脱氧影响的密度泛函理论研究)[J]. J Mol Catal(China)(分子催化), 2022, 36(2): 145−161
|
[20] |
Copper(Ⅱ)-mediated stereoselective reduction of acetylenic sulfones by hydrosilanes[J]. Organometallics, 1989, 8(9): 2279–2281.
DOI:10.1021/om00111a033 |
[21] |
a. Zi Guo-fu(白国甫), Yin Cheng-lie(尹承烈). Study on the asymmetric hydrogen transfer from propan-2-ol to acetophenone catalyzed by Iridium(Ⅰ) complexes with PPEI(铱(Ⅰ)苯乙胺Schiff碱络合物催化苯乙酮的不对称氢转移反应) [J]. J Mol Catal(China)(分子催化), 1997, 11(5): 359−363. b. Le Chuan-jun(乐传俊), Gu Li-ping(顾黎萍), He Ren(何 仁). Ruthenium complex highly efficiently catalyzed transfer hydrogenation of olefin and ketone(钌配合物高效催化酮和烯烃的氢转移反应) [J]. J Mol Catal(China)(分子催化), 2009, 23(2): 157−161. c. Li Yan-Yun(李岩云), Dong Zhen-rong(董振荣), Gao Jing-xing(高景星), et al. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by new chiral diaminodiphosphine-Iridiun(Ⅰ) systems(新型手性胺膦-铱体系催化芳香酮的不对称转移氢化) [J]. J Mol Catal(China)(分子催化), 2009, 23(6): 483−487. d. Anastas P, Eghbali N. Green Chemistry: Principles and Practice[J]. Chem Soc Rev, 2010, 39(1): 301−312.
|
[22] |
A Convenient Synthesis of Acetylenes: Catalytic Substitutions of Acetylenic Hydrogen with Bromoalkenes, Iodoarenes and Bromopyridines[J]. Tetrahedron Lett, 1975, 16(50): 4467.
DOI:10.1016/S0040-4039(00)91094-3 |
[23] |
a. Mankad N P, Laitar D S, Sadighi J P. Synthesis, structure, and alkyne reactivity of a dimeric (carbene) copper(I) hydride[J]. Organometallics, 2004, 23(14): 3369−3371. b. Fujihara T, Xu T, Semba K, et al. Copper-catalyzed hydrocarboxylation of alkynes using carbondioxide and hydrosilanes[J]. Angew Chem Int Ed, 2011, 50(2): 523−527. c. Rapeti S K, Kasina K C, Sailaja B, et al. Efficient in situ palladium nano catalysis for Z-selective semi transfer hydrogenation of internal alkynes using safer 1,4-butanediol[J]. Tetrahedron Lett, 2020, 61(3): 151395.
|