钱波.量子机器学习在催化化学研究中的应用[J].分子催化,2023,37(1):63-72
量子机器学习在催化化学研究中的应用
Application of Quantum Machine Learning in the Research of Catalytic Chemistry
投稿时间:2022-12-15  修订日期:2023-01-05
DOI:10.16084/j.issn1001-3555.2023.01.007
中文关键词:  量子机器学习  催化材料设计  催化反应性能  催化反应机理
英文关键词:quantum machine learning  catalytic materials design  catalytic reaction performance  catalytic reaction mechanism
基金项目:中国科学院“西部之光”人才培养引进计划
作者单位
钱波 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室, 甘肃 兰州 730000 
摘要点击次数: 737
全文下载次数: 880
中文摘要:
      量子机器学习融合了量子化学与机器学习的优点,具有比传统密度泛函理论更快的计算速度和更高的准确性.量子机器学习可为复杂、多维、多尺度的催化化学提供更智能和有效的研究方式,通过训练可靠的数据及建立合理的模型和算法,快速、准确地预测最优的催化剂设计参数、最佳的催化剂材料的合成方法和反应条件、以及催化剂结构和性能之间的关系.作者就量子机器学习应用于催化材料的设计、催化反应性能和催化反应机理三方面的发展趋势进行了概述.
英文摘要:
      Quantum machine learning, which combines the advantages of quantum chemistry and machine learning, possesses faster calculation speed, and higher accuracy than traditional density functional theory. Quantum machine learning provides more intelligent and effective research approaches for complex, multi-dimensional and multi-scale catalytic chemistry. Furthermore, the optimal catalyst design parameters, the optimal synthesis method and reaction conditions of catalyst materials, and the relationship between catalyst structure and performance could be quickly and accurately predicted by training reliable data and establishing reasonable models and algorithms. In this protocol, the application of quantum machine learning to catalytic materials design, catalytic reaction performance and catalytic reaction mechanism are summarized.
HTML  查看全文  查看/发表评论  下载PDF阅读器